29,831 research outputs found

    Experimental investigation on thermal comfort model between local thermal sensation and overall thermal sensation

    Get PDF
    To study the human local and overall thermal sensations, a series of experiments under various conditions were carried out in a climate control chamber. The adopted analysis method considered the effect of the weight coefficient of local average skin temperature and density of the cold receptors’ distribution in different local body areas. The results demonstrated that the thermal sensation of head, chest, back and hands is warmer than overall thermal sensation. The mean thermal sensation votes of those local areas were more densely distributed. In addition, the thermal sensation of arms, tight and calf was colder than the overall thermal sensation, which pronounced that thermal sensation votes were more dispersed. The thermal sensation of chest and back had a strong linear correlation with overall thermal sensation. Considering the actual scope of air-conditioning regulation, the human body was classified into three local parts: a) head, b) upper part of body and c) lower part of body. The prediction model of both the three-part thermal sensation and overall thermal sensation was developed. Weight coefficients were 0.21, 0.60 and 0.19 respectively. The model provides scientist basis for guiding the sage installation place of the personal ventilation system to achieve efficient energy use

    Controlling soliton interactions in Bose-Einstein condensates by synchronizing the Feshbach resonance and harmonic trap

    Full text link
    We present how to control interactions between solitons, either bright or dark, in Bose-Einstein condensates by synchronizing Feshbach resonance and harmonic trap. Our results show that as long as the scattering length is to be modulated in time via a changing magnetic field near the Feshbach resonance, and the harmonic trapping frequencies are also modulated in time, exact solutions of the one-dimensional nonlinear Schr\"{o}dinger equation can be found in a general closed form, and interactions between two solitons are modulated in detail in currently experimental conditions. We also propose experimental protocols to observe the phenomena such as fusion, fission, warp, oscillation, elastic collision in future experiments.Comment: 7 pages, 7 figure

    Orbital Dependent Phase Control in Ca2-xSrxRuO4

    Full text link
    We present first-principles studies on the orbital states of the layered perovskites Ca2x_{2-x}Srx_xRuO4_4. The crossover from antiferromagnetic (AF) Mott insulator for x<0.2x < 0.2 to nearly ferromagnetic (FM) metal at x=0.5x=0.5 is characterized by the systematic change of the xyxy orbital occupation. For the AF side (x<0.2x < 0.2), we present firm evidence for the xyxy ferro-orbital ordering. It is found that the degeneracy of t2gt_{2g} (or ege_g) states is lifted robustly due to the two-dimensional (2D) crystal-structure, even without the Jahn-Teller distortion of RuO6_6. This effect dominates, and the cooperative occupation of xyxy orbital is concluded. In contrast to recent proposals, the resulting electronic structure explains well both the observed X-ray absorption spectra and the double peak structure of optical conductivity. For the FM side (x=0.5x=0.5), however, the xyxy orbital with half filling opens a pseudo-gap in the FM state and contributes to the spin SS=1/2 moment (rather than SS=1 for xx=0.0 case) dominantly, while yz,zxyz,zx states are itinerant with very small spin polarization, explaining the recent neutron data consistently.Comment: 17 pages, 5 figure

    Heavy Quark Potentials in Some Renormalization Group Revised AdS/QCD Models

    Full text link
    We construct some AdS/QCD models by the systematic procedure of GKN. These models reflect three rather different asymptotics the gauge theory beta functions approach at the infrared region, βλ2,λ3\beta\propto-\lambda^2, -\lambda^3 and βλ\beta\propto-\lambda, where λ\lambda is the 't Hooft coupling constant. We then calculate the heavy quark potentials in these models by holographic methods and find that they can more consistently fit the lattice data relative to the usual models which do not include the renormalization group improving effects. But only use the lattice QCD heavy quark potentials as constrains, we cannot distinguish which kind of infrared asymptotics is the better one.Comment: comparisons with lattice results, qualitative consideration of quantum corrections are added. (accepted by Phys. Rev. D

    Understanding the white-light flare on 2012 March 9 : Evidence of a two-step magnetic reconnection

    Full text link
    We attempt to understand the white-light flare (WLF) that was observed on 2012 March 9 with a newly constructed multi-wavelength solar telescope called the Optical and Near-infrared Solar Eruption Tracer (ONSET). We analyzed WLF observations in radio, H-alpha, white-light, ultraviolet, and X-ray bands. We also studied the magnetic configuration of the flare via the nonlinear force-free field (NLFFF) extrapolation and the vector magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Continuum emission enhancement clearly appeared at the 3600 angstrom and 4250 angstrom bands, with peak contrasts of 25% and 12%, respectively. The continuum emission enhancement closely coincided with the impulsive increase in the hard X-ray emission and a microwave type III burst at 03:40 UT. We find that the WLF appeared at one end of either the sheared or twisted field lines or both. There was also a long-lasting phase in the H-alpha and soft X-ray bands after the white-light emission peak. In particular, a second, yet stronger, peak appeared at 03:56 UT in the microwave band. This event shows clear evidence that the white-light emission was caused by energetic particles bombarding the lower solar atmosphere. A two-step magnetic reconnection scenario is proposed to explain the entire process of flare evolution, i.e., the first-step magnetic reconnection between the field lines that are highly sheared or twisted or both, and the second-step one in the current sheet, which is stretched by the erupting flux rope. The WLF is supposed to be triggered in the first-step magnetic reconnection at a relatively low altitude.Comment: 4 pages, 4 figures, published in A&A Lette

    Orbital-selective Mott transitions in the degenerate Hubbard model

    Full text link
    We investigate the Mott transitions in two-band Hubbard models with different bandwidths. Applying dynamical mean field theory, we discuss the stability of itinerant quasi-particle states in each band. We demonstrate that separate Mott transitions occur at different Coulomb interaction strengths in general, which merge to a single transition only under special conditions. This kind of behavior may be relevant for the physics of the single-layer ruthenates, Ca2x_{2-x}Srx_xRuO4_4.Comment: 4 pages, 4 figure
    corecore